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Simulating Sensitivity to Reach Powerful Conclusions: A Comparison of Aggregated and 

Hierarchical Bayesian Models of Signal Detection  

Signal detection theory is a powerful framework used to model decisions made under uncertainty 

(Green & Swets, 1966). The framework can be applied to many tasks, although it has been 

commonly used to model participant responses indicating whether they detected a signal (e.g., a 

flash of light) or participant responses choosing between two alternative choices (e.g., is this 

stimulus old or new?). The basic premise behind signal detection theory is that decisions made 

under uncertainty can be modeled with a noise distribution and a signal distribution. The distance 

between the noise and signal distribution gives the metric d’, which describes how discriminable 

the signal is from the noise. However, the real contribution of signal detection theory is that it 

can consider how people may employ different decision criteria to make a decision separately 

from sensitivity (e.g., Stanislaw & Todorov, 1999). For example, when told to prioritize making 

an accurate decision over a fast decision, participants may use one criterion for making 

decisions, and this may differ from a criterion used when prioritizing speed over accuracy. Signal 

detection theory has led to many breakthroughs in theoretical and applied domains of decision 

making such as perception (e.g., Gescheider, 1997; Wixted, 2020), recognition memory (e.g., 

Glanzer, Adams, Iverson, & Kim, 1993), diagnostics (e.g., Swets, 1988; Swets, Dawes, & 

Monahan, 2000), weather forecasting (cf. DeCarlo, 1998), and even police lineup procedures 

(e.g., Wixted, 2020).  

 Signal detection theory has been implemented with many different analysis approaches 

(e.g., Stanislaw & Todorov, 1999; DeCarlo, 1998; Rouder & Lu, 2005). To get the measure of 

sensitivity or discriminability, d’, participants’ responses can be characterized as hits (correctly 

respond old when the stimulus is old), misses (respond new when the stimulus is old), correct 
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rejections (respond new when the stimulus is new), or false alarms (respond old when the 

stimulus is new). From these response classifications, participants’ hit and false alarm rates can 

be calculated, and taking the difference between the normalized hit and false alarm rates gives 

the measure, d’. This method allows one to calculate d’ for each participant. Averaging over all 

participants gives the population level d’ which allows conclusions to be made about 

experimental conditions. However, this approach does not explicitly account for variability in 

different participants’ decisions due to, for example, differences in memory ability. It also does 

not consider item variability due to differences in, for example, item difficulty or bias.  

While averaging over participants and items should reduce the “noise” in the sensitivity 

estimate associated with these sources of variability, there are several problems that could arise if 

there is a failure to explicitly account for participant and item level variability. First, by treating 

participants and items as fixed effects, an implicit assumption is made that the participants and 

items in the given study constitute the entire population of participants and items to which one 

would like to generalize. In the context of language research, Clark (1973) argued this very point 

in the context of the words that experimenters used as stimuli and termed it the “language-as-

fixed-effect fallacy.” If participants and items are not treated as random variables, there is not 

statistical evidence allowing one to generalize the experimental findings beyond the participants 

and items in a given experiment. However, this generalization is precisely what most research 

aims to do, and often researchers make this claim without the statistical backing for it (Clark, 

1973). 

Second, estimating discriminability while aggregating over both participants and items 

can lead to conclusions that problematically do not apply to individual participants or items in 

the study. For example, Estes (1956) raised this issue in the context of learning curves, noting 
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that obtaining the mean, population level learning curve does not necessarily provide the 

information necessary for describing individual’s learning. In the context of signal detection 

theory, Rouder and Lu (2005) demonstrated that when there is item variability present, 

estimating sensitivity without accounting for the item variability leads to a systematic 

underestimation of d’. Although potentially less devastating when estimating linear models, 

failing to account for participant and item level variable can be particularly detrimental in 

nonlinear contexts such as those typically under investigation with signal detection theory 

(Rouder & Lu, 2005). 

Beyond systematically mis-estimating effects when participant and item level variability 

is present in the data, aggregation can also impact claims made from assessing the curvature of 

zROC curves (Morey, Pratte, & Rouder, 2008). As zROC curves have been widely used in the 

literature to inform theories of recognition memory, artifacts due to aggregation would be 

particularly problematic for choosing between competing theories and forming conclusions. The 

problem is exacerbated by the fact that the source of variability could differ. For example, items 

in a recognition memory experiment may vary in memorability or bias or both. Failing to 

account for this variation by aggregating over items limits conclusions to describing how 

variability affects responses from a bird’s eye view (Morey, Pratte, & Rouder, 2008). 

Finally, failing to account for participant and item level variability present in the data can 

lead to an inflation of the Type I error rate of the test (e.g., Barr, Levy, Scheepers, & Tily, 2013). 

As researchers, we set an alpha level to 0.05 (or lower) and make conclusions understanding that 

the false positive rate is controlled at the specified alpha level. However, if variability due to 

participants and items is not properly accounted for, the false positive rate of the test could creep 
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much higher than the alpha level, and dangerously, this would not be easily diagnosable to the 

researcher.  

However, while many implementations of signal detection theory require aggregating 

over participants and items, there has been a recent push to implement signal detection theory 

within a hierarchical framework which allows the variability due to participants and items to be 

modeled as random effects (Rouder & Lu, 2005; Rouder, Lu, Speckman, Sun, & Jiang, 2005; 

Rouder, Sun Speckman, Lu, & Zhou, 2003; Rouder et al., 2007; DeCarlo, 2010). By partialing 

out the estimated variance due to participants and items, hierarchical models (also termed mixed 

models) solve many of the problems created by aggregation. Additionally, hierarchical models 

can be implemented with frequentist or Bayesian estimation methods. While frequentist 

approaches dominate the field of psychology, as computational power has become more 

accessible, Bayesian estimation has started to become more widely used. Bayesian estimation 

has several benefits relative to frequentist estimation such as a more intuitive interpretability, 

conditioning only on data that has been observed, the possibility to incorporate prior knowledge, 

and the ability to collect evidence in favor of the null hypothesis (Wagenmakers, Lee, 

Lodewyckx, & Iverson, 2008; Kruschke & Liddell, 2017).  

Rouder and colleagues published a series of studies fitting hierarchical Bayesian models 

to recognition decisions and response times (Rouder & Lu, 2005; Rouder, Lu, Speckman, Sun, & 

Jiang, 2005; Rouder, Sun, Speckman, Lu, & Zhou, 2003; Rouder et al., 2007). Across these 

studies, they demonstrated that using hierarchical models resolves the problem of systematic 

underestimation of sensitivity that arises in aggregated techniques. Additionally, they have 

shown that for small sample sizes as can be typical for some experiments invoking signal 

detection theory, Bayesian estimation is more accurate than maximum likelihood estimation 
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(Rouder et al., 2003). Finally, they have also shown that hierarchical Bayesian models provide 

accurate fits to the data when the sampling strategy is to collect a large number of participants 

with limited numbers of trials (Rouder et al., 2005).  

The current study follows the logic of Rouder and colleagues’ approach to assess the 

impact of aggregation and Bayesian estimation on the d’ parameter. Three different models 

under the umbrella of equal variance signal detection theory were implemented. The goal of the 

current work is to conclude whether there are differences in the Type I error rate across 

implementations that vary in aggregation and estimation method. 

The Present Study 
 

In the present study, data was simulated following the design of a planned experiment. In 

the planned experiment, participants will be emailed an online survey that asks about their 

preferences for a variety of topics. After responding to the survey, two participants at a time will 

come into the lab to learn about each other’s preferences (see Coronel & Federmeier, 2016 for 

example materials). The experimenter will provide prompts of specific preferences to discuss 

based on each partner’s answers to the pre-study survey. After discussing the preferences 

prompted by the experimenter, participants will concurrently read sentences containing 

statements about either their own or their partner’s preferences. After reading each sentence, 

participants will respond whether the preference stated in the presented sentence was correct or 

incorrect. As the stimuli will be created from the pre-study survey, the presented sentences will 

contain preferences that are both correct and incorrect as well as known and unknown to the 

partner. For example, if the participants (e.g., Emily and Melinh) discussed that Emily’s favorite 

pizza topping was artichokes, after reading the sentence, “Emily’s favorite pizza topping is 
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pepperoni.,” both participants should respond that the preference in the sentence was incorrect as 

this information was known by both participants.  

Data simulated for this 2 (correct: yes, no) x 2 (known: yes, no) design contained 

variability due to both participants and items. In the simulated data, condition effects due to the 

correctness of the presented item and whether the preference was known were set to 0. An equal 

variance signal detection model was implemented with three methods: 1. Manually calculating 

point estimates of condition discriminability (Stanislaw & Todorov, 1999), 2. Estimating 

condition discriminability with a Bayesian generalized linear model (DeCarlo, 1998), 3. 

Estimating condition discriminability with a Bayesian generalized linear mixed model (Rouder 

& Lu, 2005). These different implementations were chosen such that they varied in the 

estimation method and the treatment of participant and item level variability. As all condition 

effects were simulated to be null, critical comparison of the different implementations allows 

conclusions about how the treatment of participant and item level variability by the different 

methods impacts false positive rates and condition sensitivity estimates. I predict that the 

Bayesian generalized linear mixed model will have lower false positive rates than both the 

manual point estimate method and Bayesian generalized linear model method as it is the only 

method that does not aggregate over participant and item level variability.  

 
Method 

Data Simulation 

All data simulations were generated in R (R Core Team, 2020) with the faux (DeBruine, 

2021) package. The data generating simulation followed the extended binomial method shared in 

DeBruine and Barr (2021). Using this method, data was generated from a random normal 

multivariate distribution based on a specified number of participants and items, specified 
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participant and item level variability and correlations, as well as specified condition effects. To 

simulate data from the planned 2 (correct, incorrect) x 2 (known, unknown) experimental design, 

the number of participants was always set to 40, and the number of total items was specified as 

100 (known: 50, unknown: 50). By-item and by-participant correlations were also set to 0, and 

all participant and item level variability was set to 1.  

For each participant, the gaussian response for each item was calculated by adding the 

intercept (grand mean, 0), the condition effect for correctness of the preference (0), the condition 

effect for knowledge of the preference (0), and the interaction effect of the conditions (0). This 

effect was then transformed with an inverse logit function to get the probability of answering 

with a “correct” response (50%). Simulated responses for each item were then obtained by 

sampling from a random Bernoulli distribution with the calculated probability of answering with 

a “correct” response.  Each trial was then labeled as either a hit, miss, correct rejection, or false 

alarm. 

Data Analysis 

 The data were analyzed with three different implementations of equal variance signal 

detection theory. All models and estimates were generated in R (R Core Team, 2020), and 

Bayesian models were generated with the brms package (Bürkner, 2017). The analysis approach 

follows the model fitting procedure specified in Vuorre (2017a).  The first implementation 

involved manually calculating a point estimate for the discriminability of the preferences based 

on whether they were correct or incorrect directly from the data (Stanislaw & Todorov, 1999). 

First, items were aggregated over, and the number of hits, misses, correct rejections, and false 

alarms was counted for each participant. From these counts, the Z-transformed hit rate and false 

alarm rate were calculated. D’ was calculated by subtracting the Z-transformed false alarm rate 
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from the Z-transformed hit rate for each participant. The population d’ was obtained by 

averaging d’ across participants.   

 A Bayesian generalized linear model was fit for the second implementation of equal 

variance signal detection theory (DeCarlo, 1998). This approach allows predictors to be 

estimated for d’ but does not separately model variability due to participants and items. The 

generalized linear model was fit by specifying the Bernoulli distribution with a probit link 

function. Participant responses were estimated from predictors coding whether the preference 

was correct or incorrect, whether the preference was known or unknown, as well as the 

interaction. The posterior distribution was estimated by sampling four MCMC chains for 2000 

iterations, and the priors were set to the default. The intercept estimate can be interpreted as the 

criterion, and the predictor estimates as the d’ for that condition.  

 Finally, a Bayesian generalized linear mixed model was fit as the third implementation of 

equal variance signal detection theory (EVSDT) (Rouder & Lu, 2005).  This implementation was 

identical to the generalized linear model with the exception that participant and item level 

intercept and slope variability were accounted for in the model.  

Power Simulation 

 Simulating data and analyzing it with three different methods allows one to draw 

conclusions about which method is preferred for recovering the effects present in the data. 

However, as with experimental work, to trust the conclusions drawn from such a comparison, the 

results must be replicated many times. Therefore, following the approach prescribed by Debruine 

and Barr (2021), multiple experiments were simulated with the same data and analysis 

parameters with the goal of understanding the power of each model to recover the effects present 

in the data. Each experiment consisted of simulating data drawn from the same distribution 
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described above and analyzing the same data with each of the EVSDT methods. To draw a 

conclusion about the results of the analysis for each experiment, the condition effects 

(Implementation 1: correctness; Implementations 2 & 3: correctness, knowledge, interaction 

effect) were tested with a one sample t-test (Implementation 1) or a one sample hypothesis test 

comparing the posterior probability under the hypothesis against the alternative of a null (0) 

effect (Vuorre, 2017b). One hundred experiments were simulated with this procedure.  

 The validity of the conclusions of each method was then tested by averaging the number 

of significant results found for each condition across the one hundred experiments. As the real 

condition effects in the simulated data were set to 0, a model has successfully recovered the 

effect from the data if the estimate of each condition effect is null (non-significant). However, as 

there is variability included in the data simulation process, there will sometimes be false positive 

results. In this experiment, the alpha level was set to 0.05. Any implementation that maintains an 

alpha level of .05 or below across the 100 experiments we will conclude as having successfully 

recovered the condition effects in the data. 

 
Results 

 
The d’ for determining whether the preference presented was correct or incorrect as 

calculated from each analysis method for each of the one hundred replications of the experiment 

is plotted in Figure 1. Descriptively, it should be noted that the d’ calculated for the same 

condition for the same data (same replication) is not equivalent across methods. However, it 

should be noted that across replications, the d’ for each method hovers around 0, which is the 

true condition effect present in the data.  
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Figure 1. d’ calculated by each method for each experiment. 

To assess how many incorrect conclusions would be drawn for each method across 

replications, the number of d’ results for the correct vs. incorrect decision that significantly 

differed from 0 were counted and averaged to get the false positive rate for the method1. 

Manually calculating point estimates of d’ for correct and incorrect preferences led to an average 

d’ of -0.003 and a false positive rate of 0.06.  Estimating d’ with a generalized linear model 

resulted in an average d’ of 0.002 and a false positive rate of 0.46. Finally, estimating d’ with a 

generalized linear mixed model resulted in a mean d’ of 0.003 and a false positive rate of 0.04. 

Condition d' False Positive Rate Method 
Correctness 0.0034 0.04 GLMM 
Correctness 0.0016 0.46 GLM 
Correctness -0.0029 0.06 Point Estimate 
Interaction -0.0152 0.04 GLMM 
Interaction -0.0137 0.35 GLM 
Knowledge 0.0174 0.02 GLMM 
Knowledge 0.0131 0.59 GLM 

Table 1. Mean d’ estimates across and the associated false positive rate. 

 
1 Only the d’ results for the correct vs. incorrect parameter are reported in text as this was calculated in each method. 
See Table 1 for d’ results for the knowledge and interaction parameters for the generalized linear model and the 
generalized linear mixed model. 
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Discussion 

While each method was able to estimate d’ parameters that were close to the true effects 

in the simulated data, the absence of random effects of participants and items catastrophically 

inflated the false positive rate across experiments for the generalized linear model. The point 

estimate method, as it was calculated directly from the data, maintained the expected alpha level 

as did the generalized linear mixed model that estimated d’ and accounted for the variability of 

participants and items. This simulation demonstrates how truly egregious it was to estimate d’ 

without accounting for variability due to participants and items. 

 There could be several reasons why the generalized linear model performed so badly. 

First, as the d’ estimates for the generalized linear model for each experiment were similar to the 

d’ calculated by the other methods, the variance used to calculate the significance of the effect 

can be blamed for erroneously reaching a conclusion of a significant result. Second, several 

analysis choices specific to the given implementation could be to blame. Both generalized linear 

models were fit with default priors. For the generalized linear mixed model, this did not have a 

meaningful effect as it could have used the participant variable as a prior and scale itself 

appropriately (Kruschke & Lidell, 2017). However, as the non-hierarchical model did not 

include participants as a parameter, the set of default priors may have been particularly 

catastrophic for the results. Additionally, the number of iterations was limited to 2000 for each of 

the generalized linear models. Perhaps if the non-hierarchical model was allowed to iterate 

longer, it could have reached the correct conclusion more often. Other limitations of the current 

approach are related to the number of experimental replications. While the use of 100 
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replications here provides a glimpse into the power of each of the methods, to be truly confident 

in the results, a greater number (~10,000) of replications should be simulated2.  

 It should also be considered that in this study, different methods under the framework of 

equal variance signal detection theory were implemented. However, this approach could be 

easily extended to unequal variance methods to test the validity of the conclusions when the 

signal and noise (or choice) distributions do not have the same variance. Additionally, the benefit 

of this approach is that the impact of different experimental parameters on the results can be 

easily tested. For example, one could test whether it is better to optimize the number of 

participants or items for a given study based on this approach. Further, in this study, the amount 

of participant and item variability was kept constant. However, it could be the case that the 

different methods would perform better or worse depending on the level of variability present in 

the data. This is could also be simulated in follow-up studies. In conclusion, this study suggests 

that while different estimation methods can be implemented to test questions in signal detection 

theory, it is critical to account for participant and item level variability to maintain an acceptable 

false positive rate across experiments.  

 

 

 

 

 

 

 

 
2 It took over nine hours for 100 replications to complete. Given the time constraints of the project deadline, I 
decided that 10,000 replications would be an endeavor for another time. 
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